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Appendix A EM-based Estimation Method

This section derives the complete-data log-likelihood function and describes the expectation and max-
imization steps for the hidden Markov model developed in Section 3. We first consider the complete-data
log-likelihood function:

logL(CT | Θ) = logL(Y1, Z1,∆N1, δ1 | Θ) + logL(Y2, Z2,∆N2, δ2 | C1,Θ)

+ · · ·+ logL(YT , ZT ,∆NT , δT | CT−1,Θ) (A.1)

Let 1(A) denote an indicator function taking value 1 if A is true, and 0 otherwise. Using the Markov
property, we have

logL(Yt, Zt,∆Nt, δt | Ct−1,Θ) =

K∑
y=1

K∑
k=1

1(Yt−1 = y, Yt = k) log pyk

+

K∑
k=1

1(Yt = k)

{
−n

2
log(2π)− 1

2
log |Σ(k)| − 1

2
(Zt − b(k))′Σ(k)−1(Zt − b(k))

}

+
K∑
k=1

∞∑
c=0

1(Yt = k,∆Nt = c) {−λ(k) + c log λ(k)− log(c!)}

+

K∑
k=1

∞∑
c=0

1(Yt = k,∆Nt = c)

c∑
l=1

{
−n

2
log(2π)− 1

2
log |Ω(k)| − 1

2
(δlt − η(k))′Ω(k)−1(δlt − η(k))

}
(A.2)

Substituting (A.2) into (A.1) and taking the expectation conditional on XT and Θ(p), we have

Q(Θ,Θ(p)) = E
[
logL(CT | Θ)

∣∣∣ XT ,Θ(p)
]

=

K∑
k=1

P (Y1 = k|XT ,Θ(p)) log %k +

T∑
t=2

K∑
y=1

K∑
k=1

P (Yt−1 = y, Yt = k|XT ,Θ(p)) log pyk

− nT

2
log(2π)− 1

2

T∑
t=1

K∑
k=1

P (Yt = k|XT ,Θ(p)) log |Σ(k)|

− 1

2

T∑
t=1

K∑
k=1

P (Yt = k|XT ,Θ(p))E
[
(Zt − b(k))′Σ(k)−1(Zt − b(k))

∣∣∣ Yt = k,XT ,Θ(p)
]

+

T∑
t=1

K∑
k=1

∞∑
c=0

P (Yt = k,∆Nt = c|XT ,Θ(p)) {−λ(k) + c log λ(k)− log(c!)}

− n

2
log(2π)

T∑
t=1

∞∑
c=0

cP (∆Nt = c|XT ,Θ(p))− 1

2

T∑
t=1

K∑
k=1

∞∑
c=0

cP (Yt = k,∆Nt = c|XT ,Θ(p)) log |Ω(k)|

− 1

2

T∑
t=1

K∑
k=1

∞∑
c=0

cP (Yt = k,∆Nt = c|XT ,Θ(p))E
[
(δ1t − η(k))′Ω(k)−1(δ1t − η(k))

∣∣∣ Yt = k,∆Nt = c,XT ,Θ(p)
]

(A.3)

In the expectation step (E-step), we need to compute the conditional probabilities and expectations in
Q(Θ,Θ(p)) for a given parameter set Θ(p). In the maximization step (M-step), we find Θ that maximizes
Q(Θ,Θ(p)). Then we set Θ(p+1) = arg maxΘQ(Θ,Θ(p)). The algorithm starts with an initial set of
parameters Θ(0) and the E-step and M-step are run alternately until a termination (convergence) condition
is met.

We use a modified version of the forward-backward algorithm of Baum et al. (1970) to compute the
conditional probabilities and expectations in the E-step. In particular, we use the modified forward prob-
abilities of Lystig and Hughes (2002)

ω(t, k) = P (Yt = k, rt | Xt−1,Θ) (A.4)
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and the backward (or smoothed) probabilities

γ(t, k) = P (Yt = k | XT ,Θ). (A.5)

With this choice of the forward and backward probabilities we can avoid the underflow problem and easily
compute the log-likelihood value of the incomplete data:

L(XT | Θ) =
T∑
t=1

log

(
K∑
k=1

ω(t, k)

)
. (A.6)

Due to the choices of our complete data, we are able to solve for Θ(p+1) in the M-Step explicitly, avoiding
the use of a computationally intensive search algorithm.

Finally, the asymptotic standard errors of the parameters can be obtained from the Fisher information
matrix. Specifically, the asymptotic distribution of the estimates of parameters in Θ is normal with mean
Θ0 and variance I−1

Θ where Θ0 is the set of the true parameters, and IΘ is the information matrix1. The
re-parameterization technique can be used to obtain the asymptotic distribution of the estimates of a new
set of parameters. Lystig and Hughes (2002) provide a recursive method to compute the first and second
derivatives of the log-likelihood function for hidden Markov models, which can be used to compute the
Fisher information matrix.

1In Appendix B we show that our model is identifiable so the Fisher information is nonsingular (see Rothenberg, 1971).
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Appendix B Model Identification

For a given parameter set for the diffusion and jump components θ = (µ,Σ, λ, η,Ω) , let Fθ : Rn → [0, 1]
denote the cumulative distribution function of the n−dimensional vector of returns

Rt = Zt +

∆Nt∑
m=1

δmt . (B.1)

That is, Fθ represents the distribution of the returns for a given regime characterized by the parameter
set θ. Let F denote the class of all distribution functions Fθ, and φ(s) = E[es

′Rt ], s ∈ Rn the moment
generating function of Rt. It is easy to show that

φ(s) = exp

(
1

2
s′Σs+ s′µ+ λ

(
e

1
2
s′Ωs+s′η − 1

))
. (B.2)

With the moment generating function above, one can show that any finite mixture of Fθ1 , . . . , Fθk is
identifiable for the univariate case (n = 1) using a similar approach as in the proof of Proposition 1 of
Teicher (1963), which derives the result for the Gaussian distribution. The identifiability of the finite
mixture of the multivariate case can be proved from the univariate case similarly to the proof of the
Gaussian distribution in Proposition 2 of Yakowitz and Spragins (1968). More specifically, by assuming
the finite mixture of the multivariate case is not identifiable, we can show along the line of the Gaussian
distribution case that it contradicts with the fact that the univariate case is identifiable. Finally, the
identifiability of the finite mixture of distribution Fθ can be extended to the identifiability of our hidden
Markov model using Theorem 2 of Teicher (1967). See also Section 12.4 of Cappe, Moulines, and Ryden
(2005) for detailed explanations of how to apply Theorem 2 of Teicher (1967) to prove the identifiability
of general hidden Markov models from finite mixtures.
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Appendix C Test Statistics for Model Selection

We identify the number of regimes and the existence of jumps based on Davies (1987) who derives the
upper bound of the p-value for the hypothesis testing when nuisance parameters (those associated with
jumps and additional regimes) are present only under the alternative hypothesis. We test the hypothesis
based on the assumption that the likelihood ratio defined by

LR = 2(log-likelihood under alternative− log-likelihood under null) (C.1)

has a single peak over the space of the additional parameters under the alternative hypothesis (see, for
example, Garcia and Perron, 1996) when the model under the null hypothesis is nested in the model under
the alternative hypothesis. Our model has a larger set of estimated parameters, but the test adjusts for the
number of parameters. For the non-nested case (one regime with jumps vs. two regimes without jumps),
we obtain an upper bound of the p−value from the test statistic of Rivers and Vuong (2002):

zT =

√
T

σ̂T

[
1

T

T∑
t=1

ln

(
lA(rt |Xt−1, Θ̂A)

lN (rt |Xt−1, Θ̂N )

)]
(C.2)

where lN and Θ̂N (lA and Θ̂A) are the one-period likelihood function and estimated parameters under null
(alternative) hypothesis, respectively, and σ̂T is the estimate of standard deviation of the difference of the
one-period log-likelihoods. We compute σ̂T based on Newey and West (1987) using the Bartlett weights
with various lag values, and choose the highest p−value as the upper bound.
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Appendix D Benckmark Models

This section describes the benchmark models used in Section 5. Throughout this appendix, let ri,t
denote the return of country i at time t for i = 1, . . . , n, t = 1, . . . , T .

D.1 Multivariate GARCH

We assume that each univariate process follows the GJR-GARCH(p, o, q) model of Glosten, Jagan-
nathan, and Runkle (1993):

ri,t = µi + σi,tεi,t (D.1)

σ2
i,t = ωi +

p∑
j=1

αi,jz
2
i,t−j +

o∑
j=1

γi,jη
2
i,t−j +

q∑
j=1

βi,jσ
2
i,t−j (D.2)

where zi,t = σi,tεi,t, ηi,t = zi,t1(zi,t < 0) and εi,t is normally distributed with mean 0 and variance 1. In
the CCC model, the correlation matrix of εt = [ε1,t, . . . , εn,t]

′ is a constant matrix S. In the asymmetric
DCC(m, l, k) model, the correlation matrix at time t of εt is St, which the implied correlation matrix of
Qt, where Qt satisfies

Qt =

1−
m∑
j=1

aj −
k∑
j=1

bj

 Q̄− n
l∑

j=1

gj +

m∑
j=1

ajzt−jz
′
t−j +

l∑
j=1

gjηt−jη
′
t−j +

k∑
j=1

bjQt−j (D.3)

and zt = [z1,t, . . . , zn,t]
′, ηt = [η1,t, . . . , ηn,t]

′. Note that aj , bj , gj are constants and Q̄ is a constant matrix.
We fit the models with various choices of p, o, q,m, l, k ∈ {0, 1, 2}. Based on the AIC, we select the CCC
model with GJR-GARCH(1,1,1), and the asymmetric DCC(2,0,2) model with GJR-GARCH(1,1,1).

D.2 Factor copula

Similar to Oh and Patton (2012), we assume that each univariate process follows the AR(1)-GJR-
GARCH(1,1,1):

ri,t = ai + bixi,t−1 + σi,tεi,t (D.4)

σ2
i,t = ωi + αiz

2
i,t−1 + γiη

2
i,t−1 + βiσ

2
i,t−1 (D.5)

where zi,t = σi,tεi,t and ηi,t = zi,t1(zi,t < 0). Note that ai, bi, ωi, αi, γi and βi are constants. εi,t is
assumed to be independent across t and has marginal distribution F̂i which is the empirical distribution
of estimated εi,t from the AR(1)-GJR-GARCH(1,1,1). Based on Oh and Patton (2012), the joint CDF of
εt = [ε1,t, . . . , εn,t]

′ is modeled by a copula C(F̂1, . . . , F̂n) implied from the copula of Y = [Y1, . . . , Yn]′ in
the following factor model:

Yi =
k∑
j=1

ci,jfj + ui

where fj and ui are all independent, and ci,j are the parameters representing the factor loadings. We
assume that f1 follows the skewed-t distribution of Hansen (1994) with parameters (ν, λ), and f2, f3, f4 (in
the four-factor model) and ui follows the same Student-t distribution with ν degrees of freedom. For the
one-factor model with the same factor loading, we impose the condition ci,1 = c for all i = 1, . . . , n. For
the four-factor model, we impose no restriction on ci,1, i = 1, . . . , n, but impose ci,2 = c2 if country i is in
the Asia-Pacific region, and 0 otherwise; ci,3 = c3 if country i is in Europe, and 0 otherwise; and ci,4 = c4

if country i is in North America, and 0 otherwise. We use the simulated method of moments of Oh and
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Patton (2013) to fit the copula models based on the Spearman’s rank correlation and quantile dependence
at quantiles 0.15, 0.20, 0.80 and 0.85 fitting criteria. Due to high sensitivity to the starting values, we
randomly choose the starting values and fit each model for at least 30 times, and select the best model.

D.3 Multivariate factor stochastic volatility

The returns are assumed to follow the multivariate factor stochastic volatility model of Omori and
Ishihara (2012) with q factors:

ri,t =

q∑
j=1

bi,jfj,t + λ−1
t eαi,t/2ε1,i,t i = 1, . . . , n (D.6)

fj,t = eαn+j,t/2ε2,j,t j = 1, . . . , q (D.7)

αk,t+1 = φkαk,t + ηk,t k = 1, . . . , n+ q, t ≥ 1 (D.8)

where λt is i.i.d. with gamma(ν/2, ν/2) distribution, αk,1 is normally distributed with mean 0 and variance
σ2
k,ε/(1 − φ2

k). Let εj,t = [εj,1,t, . . . , εj,n,t]
′ for j = 1, 2, εt = [ε′1,t, ε

′
2,t]
′ and ηt = [η1,t, . . . , ηn+q,t]

′. Assume
that the vector [ε′t, η

′
t]
′ is jointly normally distributed with mean 0 and variance-covariance matrix

Σ =

[
Σεε Σεη

Σεη Σηη

]
(D.9)

where

Σεε = diag(σ2
1,ε, . . . , σ

2
n+q,ε) (D.10)

Ση,η = diag(σ2
1,η, . . . , σ

2
n+q,η) (D.11)

Σε,η = diag(ρ1σ1,εσ1,η, . . . , ρn+qσn+q,εσn+q,η) (D.12)

and diag(a1, . . . , an) is the diagonal matrix whose (i, i) entry is ai. For identification of the factor loadings,
assume that

bi,j = 0, i < j, i = 1, . . . , q (D.13)

bi,i = 1, i = 1, . . . , q (D.14)

Note that bi,j , φk, σi,ε, σi,η and ρi are constants. We estimate the model parameters for one, three and five
factors using the MCMC method described in their paper.
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Appendix E Quantile Dependence

Oh and Patton (2013), among others, use quantile dependence to illustrate the dependence between
stock returns. We now investigate how well our two-regime model with jumps fits the quantile dependence
implied from the data compared to the benchmark models. This provides a robustness check for a different
measure of extreme dependence. In particular, let r1 and r2 denote the returns of countries 1 and 2 whose
marginal cumulative distribution functions are F1 and F2. The quantile dependence at quantile φ ≤ 0.5
is P (F1(r1) < φ | F2(r2) < φ) and at quantile φ > 0.5 is P (F1(r1) > φ | F2(r2) > φ). Note that it does
not depend on the order of r1 and r2. For each model, we simulate 500,000 observations and compute
its empirical quantile dependence2. Figure E.1 shows the implied quantile dependences of multivariate
GARCH models (Panel (a)), factor copula models (Panel (b)), and multivariate factor stochastic volatility
models (Panel (c)) compared to those from the actual data, and the two-regime model with jumps. Observe
that the implied quantile dependence of our two-regime model with jumps matches that of the data very well
for all quantile levels. The quantile dependence from the multivariate GARCH models fits well to the data
for the upper tail (φ > 0.5) but underestimates those for the lower tail (φ < 0.5). It is also symmetric due
to conditionally normal assumption. The factor copula models, on the other hand, generate asymmetric
quantile dependence with higher values for the lower tail. However, they underestimate the quantile
dependences for both lower and upper tails, especially for the extreme values of φ. The multivariate
factor stochastic volatility models provide similar results as the factor copula models except that they
underestimate the quantile dependences for all values of φ. This emphasizes the limitation of these models
on capturing dependency of extreme returns.

2The empirical quantile dependence of observations (r1,t, r2,t), t = 1, . . . T at quantile φ is

q̂(φ) =


1
φT

∑T
t=1 1(F̂1(r1,t) ≤ φ and F̂2(r2,t) ≤ φ) φ ∈ (0, 0.5]

1
(1−φ)T

∑T
t=1 1(F̂1(r1,t) > φ and F̂2(r2,t) > φ) φ ∈ (0.5, 1)

where 1(A) is an indicator function equal to 1 if A is true, and 0 otherwise, and F̂i is the empirical CDF of return ri.
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Figure E.1

Quantile dependence of GARCH, factor copula and factor stochastic volatility models.

This figure shows the average quantile dependences from forty-five country pairs implied from data, our two-regime model

with jumps and the benchmark models: GARCH (Panel (a)), factor copula (Panel (b)) and factor stochastic volatility (Panel

(c)).
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Appendix F Optimal Portfolio Weight Derivation and Calculation

This appendix provides the derivation of Theorem 6.1 and how to compute the optimal portfolio weights
numerically. First, let Ft = {R1, . . . , Rt,W0, . . . ,Wt} denote the information set at time t. Based on Ft,
the investor forms her belief about the likelihood of the market regime qt = [q1,t, . . . , qK,t]

′, and optimally
chooses her portfolio weight xt. Then the returns Rt+1, whose distribution depends on the next-period
unobservable regime Yt+1, are realized, and the investor updates her belief using the Bayes’ rule

qy,t+1(qt, Rt+1) =

∑K
j=1 qj,tpj,yfy(Rt+1)∑K

z=1

∑K
j=1 qj,tpj,zfz(Rt+1)

(F.1)

where fy(r) is the likelihood function of the return Rt+1 at r given that the next-period regime Yt+1 is y.
Observe that qy,t+1 depends on probability vector qt and return vector Rt+1.

Using the Markov property, it can be seen that the investor requires only her current wealth Wt and
the regime probability vector qt to make her allocation. Let V (t, q, w) denote the value function at time t
when qt = q and Wt = w

V (t, q, w) = max
x

E

[
W 1−γ
T

1− γ

∣∣∣ qt = q,Wt = w

]
. (F.2)

The associated Bellman equation for the optimality condition is given by

V (t, q, w) = max
x

E[V (t+ 1, qt+1,Wt+1) | Ft]. (F.3)

It can be shown that the value function is of the form

V (t, q, w) = h(t, q)
w1−γ

1− γ
(F.4)

where h(T, q) = 1 for all probability vector q. Substituting (F.4) into (F.3), and using (7) and (F.1), we
obtain

h(t, q) = (1− γ) max
x

K∑
z=1

K∑
y=1

qzpz,yE

[(
erf + x′

(
eRt+1 − erf1

))1−γ
1− γ

h(t+ 1, qt+1(q,Rt+1))

∣∣∣∣∣ Yt+1 = y

]
(F.5)

where q = [q1, . . . , qK ]′. From the optimality condition for the Bellman equation (F.3), the maximizer in
(F.5) is the optimal portfolio weight. This proves Theorem 6.1. When a one-regime model is assumed, the
resulting optimal portfolio weight reduces to a constant vector

x∗ = arg max
x

E

[(
erf + x′

(
eRt+1 − erf1

))1−γ
1− γ

]
(F.6)

as the hedging demand for stochastic regime disappears.
The optimal portfolio weights can be obtained from solving the optimization problem (8). In order to

make computation possible, the return distribution is discretized based on an approximate integral formula
provided in Stroud (1971). Specifically, we use an accurate approximation to an integral of the form∫ ∞

−∞
· · ·
∫ ∞
−∞

e−(r21+...+r2n)g(r1, . . . , rn)dr1 · · · drn ≈
H∑
h=1

w̄hg(r̄1,h, . . . , r̄n,h) (F.7)
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for some function g where the points r̄h = [r̄1,h, . . . , r̄n,h]′ and their associated weights w̄h, h = 1, . . . ,H
are chosen so that the approximation becomes exact for any multinomial g of degree 5 or less3. For 10
countries, we need H = 1, 044 points. This choice of approximation guarantees that all weights w̄h are
positive. Without this property, the expectation in (8) after the discretization may assign negative prob-
abilities to some discrete return realizations, and consequently the numerical algorithm for maximization
problem (8) will try to minimize the utility at those realizations causing undesired errors in the resulting
x. See also Haber (1970) for the reasons supporting positive weights in integral approximations. Other
approximations of the form as in (F.7) fail to ensure this positive-weight property for degrees higher than
5, while approximations of other forms such as a product-rule quadrature will generally require a much
larger number of points for the same level of accuracy4.

To approximate the expectation in (8), we first condition on the number of jumps ∆Nt so that the
conditional distribution of Rt given Yt = y and ∆Nt = m is normal with mean b(y)+mη(y) and covariance
matrix Σ(y) +mΩ(y)

E

[(
erf + x′

(
eRt+1 − erf1

))1−γ
1− γ

h(t+ 1, qt+1(q,Rt+1))

∣∣∣∣∣ Yt+1 = y

]

=

∞∑
m=0

e−λ(y)λ(y)m

m!
E

[(
erf + x′

(
eRt+1 − erf1

))1−γ
1− γ

h(t+ 1, qt+1(q,Rt+1))

∣∣∣∣∣ Yt+1 = y,∆Nt+1 = m

]
.

(F.8)

Then we write conditional Rt+1 in terms of n i.i.d. standard normal random variables z1, . . . , zn using the
Cholesky decomposition of the covariance matrix Σ(y) +mΩ(y):

R
(y,m,z)
t+1 = b(y) +mη(y) + Lz (F.9)

where z = [z1, . . . , zn]′, and L is the lower triangular matrix obtained from the Cholesky decomposition of
Σ(y) + mΩ(y) = LL′. Applying approximation (F.7) to expectations on the right-hand-side of (F.8), we
have

E

[(
erf + x′

(
eRt+1 − erf1

))1−γ
1− γ

h(t+ 1, qt+1(q,Rt+1))

∣∣∣∣∣ Yt+1 = y,∆Nt+1 = m

]

≈ 1

πn/2

H∑
h=1

w̄hgy,m(
√

2r̄1,h, . . . ,
√

2r̄n,h;x) (F.10)

where

gy,m(z1, . . . , zn;x) =

(
erf + x′

(
eR

(y,m,z)
t+1 − erf1

))1−γ

1− γ
h(t+ 1, qt+1(q,R

(y,m,z)
t+1 )). (F.11)

3A multinomial function of degree d only contains terms of the form rd11 rd22 · · · rdnn such that all d1, . . . , dn are nonnegative

integers, and d1 + . . .+ dn ≤ d with at least one term having the sum equal to d.

4See, for example, Cools (1999) and the update of the list of all available approximations of the same type as in (F.7)

on the author’s website. A product-rule such as the Gaussian-Hermite quadrature requires H =
(
d+1
2

)n
points for exact

approximation of multinomial of degree d, or 59,049 points for n = 10 countries with d = 5.
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