Online Appendix for

"A Global Equilibrium Asset Pricing Model with Home Preference"

Bruno Solnik and Luo Zuo

June 16, 2011

This online appendix contains various derivations for the published article. It is organized as follows. Section A proves the concavity of the expected utility function. Section B derives the optimal global asset allocation with home preference. Section C examines the global market equilibrium and derives the asset pricing relation.

A. Concavity of $E U_{i}$ with respect to α_{i}

Recall that:

$$
\begin{align*}
& U_{i}\left(W_{i}^{1}\right)=v_{i}\left(W_{i} \boldsymbol{\alpha}_{\mathbf{i}}^{T} \mathbf{r}\right)+f_{i}\left(v_{i}\left(W_{i} \boldsymbol{\alpha}_{\mathbf{i}}{ }^{T} \mathbf{r}\right)-v_{i}\left(W_{i} \mathbf{d}_{\mathbf{i}}{ }^{T} \mathbf{r}\right)\right) \tag{A1}\\
& E U_{i}\left(W_{i}^{1}\right)=E v_{i}\left(W_{i} \boldsymbol{\alpha}_{\mathbf{i}}{ }^{T} \mathbf{r}\right)+E f_{i}\left(v_{i}\left(W_{i} \boldsymbol{\alpha}_{\mathbf{i}}^{T} \mathbf{r}\right)-v_{i}\left(W_{i} \mathbf{d}_{\mathbf{i}}^{T} \mathbf{r}\right)\right) \tag{A2}
\end{align*}
$$

We first show that U_{i} is concave in $\boldsymbol{\alpha}_{\mathbf{i}}$. Let's take derivatives of U_{i} with respect to $\boldsymbol{\alpha}_{\mathbf{i}}$.
The gradient is:

$$
\nabla U_{i}=\frac{\partial U_{i}}{\partial \mathbf{\alpha}_{\mathbf{i}}}=W_{i} \mathbf{r} v_{i}^{\prime}+W_{i} \mathbf{r} f_{i}^{\prime} \times v_{i}^{\prime}=W_{i} \mathbf{r} v_{i}^{\prime}\left(1+f_{i}^{\prime}\right)
$$

where the argument of v_{i}^{\prime} is $W_{i} \boldsymbol{\alpha}_{\mathbf{i}}{ }^{T} \mathbf{r}$, and the argument of f_{i}^{\prime} is $v_{i}\left(W_{i} \boldsymbol{\alpha}_{\mathbf{i}}{ }^{T} \mathbf{r}\right)-v_{i}\left(W_{i} \mathbf{d}_{\mathbf{i}}{ }^{T} \mathbf{r}\right)$. So $\frac{\partial U_{i}}{\partial \boldsymbol{\alpha}_{\mathbf{i}}}$ is continuous.

The Hessian matrix is:

$$
D^{2} U_{i}=\frac{\partial^{2} U_{i}}{\partial \boldsymbol{\alpha}_{\mathbf{i}} \partial \boldsymbol{\alpha}_{\mathbf{i}}{ }^{T}}=W_{i}^{2} \mathbf{r r}^{T}\left[v_{i}{ }^{\prime \prime}\left(1+f_{i}{ }^{\prime}\right)+v_{i}^{\prime 2} f_{i}^{\prime \prime}\right]
$$

where $v_{i}{ }^{\prime}$ and $v_{i}{ }^{\prime \prime}$ are valued at $W_{i} \boldsymbol{\alpha}_{\mathbf{i}}{ }^{T} \mathbf{r}$ and f_{i}^{\prime} and f_{i} " are valued at $v_{i}\left(W_{i} \boldsymbol{\alpha}_{\mathbf{i}}{ }^{T} \mathbf{r}\right)-v_{i}\left(W_{i} \mathbf{d}_{\mathbf{i}}{ }^{T} \mathbf{r}\right)$.
The Hessian matrix $D^{2} U_{i}$ is negative semi-definite for all values of $\boldsymbol{\alpha}_{\boldsymbol{i}}$ and \mathbf{r}, as $v_{i}{ }^{\prime}, f_{i}^{\prime}>0$ and $v_{i}{ }^{\prime}, f_{i}^{\prime \prime}<0$. (Note that $\mathbf{r r}^{T}$ is positive semi-definite.)

Let's now turn to $E U_{i}$ which can be written as a function of $\boldsymbol{\alpha}_{\mathbf{i}}$. The second derivative of $E U_{i}$ with respect to $\boldsymbol{\alpha}_{\mathbf{i}}$ is:

$$
\frac{\partial^{2} E U_{i}}{\partial \boldsymbol{\alpha}_{\mathbf{i}} \partial \boldsymbol{\alpha}_{\mathbf{i}}{ }^{T}}=E \frac{\partial^{2} U_{i}}{\partial \boldsymbol{\alpha}_{\mathbf{i}} \partial \boldsymbol{a}_{\mathbf{i}}{ }^{T}}=W_{i}^{2} E\left(\mathbf{r r}^{T}\left[v_{i} "\left(1+f_{i}^{\prime}\right)+v_{i}^{\prime 2} f_{i}^{\prime \prime}\right]\right)
$$

Because $\frac{\partial^{2} U_{i}}{\partial \boldsymbol{\alpha}_{\mathbf{i}} \partial \boldsymbol{\alpha}_{\mathbf{i}}{ }^{T}}$ is negative semi-definite for all values of $\boldsymbol{\alpha}_{\mathbf{i}}$ and \mathbf{r}, so is $\frac{\partial^{2} E U_{i}}{\partial \boldsymbol{\alpha}_{\mathbf{i}} \partial \mathbf{\alpha}_{\mathbf{i}}{ }^{T}}$.

B. Optimal global asset allocation with home preference

For a given allocation $\boldsymbol{\alpha}_{\mathbf{i}}$, we develop the Taylor expansion ${ }^{1}$ around 0 for small price movements. We expand the value function $v_{i}($.$) around 0$ and the regret function $f_{i}($.$) around 0$. So the implicit arguments are 0 for all derivatives of $v_{i}($.$) and f_{i}($.$) . With the additional notations \overline{\mathbf{r}}=E(\mathbf{r})$ and $\boldsymbol{\Omega}=E\left(\mathbf{r r}^{\mathbf{T}}\right)$, we get:

$$
\begin{equation*}
E v_{i}\left(W_{i} \boldsymbol{\alpha}_{\mathbf{i}}^{T} \mathbf{r}\right) \approx v_{i}(0)+W_{i} \boldsymbol{\alpha}_{\mathbf{i}}^{T} \overline{\mathbf{r}} v_{i}{ }^{\prime}+\frac{W_{i}^{2}}{2}\left[\boldsymbol{\alpha}_{\mathbf{i}}^{T} \boldsymbol{\Omega} \boldsymbol{\alpha}_{\mathbf{i}}\right] v_{i}^{\prime \prime} \tag{A3}
\end{equation*}
$$

and

$$
\begin{align*}
& E f_{i}\left(v_{i}\left(W_{i} \boldsymbol{\alpha}_{\mathbf{i}}{ }^{T} \mathbf{r}\right)-v_{i}\left(W_{i} \mathbf{d}_{\mathbf{i}}{ }^{T} \mathbf{r}\right)\right) \\
& \approx E\left[v_{i}\left(W_{i} \boldsymbol{\alpha}_{\mathbf{i}}^{T} \mathbf{r}\right)-v_{i}\left(W_{i} \mathbf{d}_{\mathbf{i}}{ }^{T} \mathbf{r}\right)\right] f_{i}{ }^{\prime}+\frac{1}{2} E\left[v_{i}\left(W_{i} \boldsymbol{\alpha}_{\mathbf{i}}^{T} \mathbf{r}\right)-v_{i}\left(W_{i} \mathbf{d}_{\mathbf{i}}^{T} \mathbf{r}\right)\right]^{2} f_{i}{ }^{\prime \prime} \tag{A4}
\end{align*}
$$

Note that:

$$
\begin{aligned}
& v_{i}\left(W_{i} \boldsymbol{\alpha}_{\mathbf{i}}^{T} \mathbf{r}\right)=v_{i}(0)+W_{i} \boldsymbol{\alpha}_{\mathbf{i}}^{T} \mathbf{r} v_{i}{ }^{\prime}+\frac{W_{i}^{2}}{2}\left(\boldsymbol{\alpha}_{\mathbf{i}}^{T} \mathbf{r}\right)^{2} v_{i}{ }^{\prime \prime} \\
& v_{i}\left(W_{i} \mathbf{d}_{\mathbf{i}}^{T} \mathbf{r}\right)=v_{i}(0)+W_{i} \mathbf{d}_{\mathbf{i}}^{T} \mathbf{r} v_{i}{ }^{\prime}+\frac{W_{i}^{2}}{2}\left(\mathbf{d}_{\mathbf{i}}^{T} \mathbf{r}\right)^{2} v_{i}{ }^{\prime \prime} \\
& E\left[v_{i}\left(W_{i} \boldsymbol{\alpha}_{\mathbf{i}}^{T} \mathbf{r}\right)-v_{i}\left(W_{i} \mathbf{d}_{\mathbf{i}}^{T} \mathbf{r}\right)\right] \approx W_{i}\left(\boldsymbol{\alpha}_{\mathbf{i}}{ }^{T}-\mathbf{d}_{\mathbf{i}}^{T}\right) \overline{\mathbf{r}} v_{i}{ }^{\prime}+\frac{W_{i}^{2}}{2} \boldsymbol{\alpha}_{\mathbf{i}}^{T} \boldsymbol{\Omega}{\boldsymbol{\alpha}_{\mathbf{i}} v_{i}{ }^{\prime \prime}-\frac{W_{i}^{2}}{2} \mathbf{d}_{\mathbf{i}}^{T} \mathbf{\Omega}_{\mathbf{i}} v_{i}{ }^{\prime \prime}}^{E\left[v_{i}\left(W_{i} \boldsymbol{\alpha}_{\mathbf{i}}^{T} \mathbf{r}\right)-v_{i}\left(W_{i} \mathbf{d}_{\mathbf{i}}^{T} \mathbf{r}\right)\right]^{2} \approx W_{i}^{2}\left(\boldsymbol{\alpha}_{\mathbf{i}}^{T}-\mathbf{d}_{\mathbf{i}}^{T}\right) \mathbf{\Omega}\left(\boldsymbol{\alpha}_{\mathbf{i}}-\mathbf{d}_{\mathbf{i}}\right) v_{i}{ }^{\prime 2}}
\end{aligned}
$$

Hence (A4) becomes:

$$
\begin{align*}
& E f_{i}\left(v_{i}\left(W_{i} \boldsymbol{\alpha}_{\mathbf{i}}{ }^{T} \mathbf{r}\right)-v_{i}\left(W_{i} \mathbf{d}_{\mathbf{i}}{ }^{T} \mathbf{r}\right)\right) \\
& \approx\left[W_{i}\left(\boldsymbol{\alpha}_{\mathbf{i}}^{T}-\mathbf{d}_{\mathbf{i}}^{T}\right) \overline{\mathbf{r}} v_{i}{ }^{\prime}+\frac{W_{i}^{2}}{2} \boldsymbol{\alpha}_{\mathbf{i}}^{T} \boldsymbol{\Omega} \boldsymbol{\alpha}_{\mathbf{i}} v_{i}{ }^{\prime \prime}-\frac{W_{i}^{2}}{2} \mathbf{d}_{\mathbf{i}}^{T} \boldsymbol{\Omega} \mathbf{d}_{\mathbf{i}} v_{i}{ }^{\prime}\right] f_{i}{ }^{\prime} \tag{A5}\\
& +\frac{W_{i}^{2}}{2}\left(\boldsymbol{\alpha}_{\mathbf{i}}^{T}-\mathbf{d}_{\mathbf{i}}^{T}\right) \boldsymbol{\Omega}\left(\boldsymbol{\alpha}_{\mathbf{i}}-\mathbf{d}_{\mathbf{i}}\right) v_{i}^{\prime 2} f_{i}^{\prime \prime}
\end{align*}
$$

The expected utility is the sum of two terms:

[^0]$$
E U_{i}=(\mathrm{A} 3)+(\mathrm{A} 5)
$$

Then:

$$
\begin{align*}
& E U_{i} \approx v_{i}(0)+W_{i} \boldsymbol{\alpha}_{\mathbf{i}}^{\mathbf{T}} \overline{\mathbf{r}} v_{i}^{\prime}+\frac{W_{i}^{2}}{2}\left[\boldsymbol{\alpha}_{\mathbf{i}}^{T} \boldsymbol{\Omega} \boldsymbol{\alpha}_{\mathbf{i}}\right] v_{i}^{\prime \prime} \\
& +\left[W_{i}\left(\boldsymbol{\alpha}_{\mathbf{i}}^{T}-\mathbf{d}_{\mathbf{i}}^{T}\right) \overline{\mathbf{r}} v_{i}{ }^{\prime}+\frac{W_{i}^{2}}{2} \boldsymbol{\alpha}_{\mathbf{i}}^{T} \boldsymbol{\Omega} \boldsymbol{\alpha}_{\mathbf{i}} v_{i}{ }^{\prime \prime}-\frac{W_{i}^{2}}{2} \mathbf{d}_{\mathbf{i}}^{T} \boldsymbol{\Omega} \mathbf{d}_{\mathbf{i}} v_{i}^{\prime \prime}\right] f_{i}^{\prime} \tag{A6}\\
& +\frac{W_{i}^{2}}{2}\left(\boldsymbol{\alpha}_{\mathbf{i}}^{T}-\mathbf{d}_{\mathbf{i}}^{T}\right) \boldsymbol{\Omega}\left(\boldsymbol{\alpha}_{\mathbf{i}}-\mathbf{d}_{\mathbf{i}}\right) v_{i}^{\prime 2} f_{i}^{\prime \prime}
\end{align*}
$$

Let's compute the optimal allocation by setting to zero the derivative of $E U_{i}($.$) with respect to \boldsymbol{\alpha}_{\mathbf{i}}$. The first order condition without constraints on $\boldsymbol{\alpha}_{\mathbf{i}}$:

$$
W_{i}\left[\overline{\mathbf{r}} v_{i}^{\prime}+W_{i} \boldsymbol{\Omega} \boldsymbol{\alpha}_{\mathbf{i}} v_{i} "+\overline{\mathbf{r}} v_{i}^{\prime} f_{i}^{\prime}+W_{i} \boldsymbol{\Omega} \boldsymbol{\alpha}_{\mathbf{i}} v_{i} " f_{i}^{\prime}+W_{i} \boldsymbol{\Omega}\left(\boldsymbol{\alpha}_{\mathbf{i}}-\mathbf{d}_{\mathbf{i}}\right) v_{i}^{\prime 2} f_{i} "\right]=0
$$

The optimal allocation by home investors is:

$$
\begin{align*}
& \boldsymbol{\alpha}_{\mathbf{i}}^{*}=-\frac{\mathbf{\Omega}^{-1} \overline{\mathbf{r}} v_{i}{ }^{\prime} \times\left(1+f_{i}{ }^{\prime}\right)}{W_{i}\left(v_{i}{ }^{\prime \prime}+v_{i}{ }^{\prime \prime} f_{i}{ }^{\prime}+v_{i}^{\prime 2} f_{i}{ }^{\prime \prime}\right)}+\frac{\mathbf{d}_{\mathbf{i}} v_{i}^{\prime 2} f_{i} "}{v_{i}{ }^{\prime \prime}+v_{i}{ }^{\prime} f_{i}{ }^{\prime}+v_{i}^{\prime 2} f_{i}{ }^{\prime \prime}} \\
& =\mathbf{\Omega}^{-1} \frac{\overline{\mathbf{r}}}{\lambda_{i}} \times\left(1-\frac{\gamma_{i} / \lambda_{i}}{1+\gamma_{i} / \lambda_{i}}\right)+\frac{\gamma_{i} / \lambda_{i}}{1+\gamma_{i} / \lambda_{i}} \mathbf{d}_{\mathbf{i}} \tag{A7}\\
& =\mathbf{\Omega}^{-1} \frac{\overline{\mathbf{r}}}{\lambda_{i}} \times\left(1-\theta_{i}\right)+\theta_{i} \mathbf{d}_{\mathbf{i}}
\end{align*}
$$

where $\lambda_{i}=-\frac{W_{i} v_{i} "}{v_{i}{ }^{\prime}}$ is the traditional measure of relative risk aversion and the parameter θ_{i} can be regarded as "normalized" home preference. Following Bell (1983), we define $\gamma_{i}=-\frac{W_{i} v_{i}{ }^{\prime} f_{i} \text { " }}{1+f_{i}{ }^{\prime}}$ as the foreign aversion parameter and $\theta_{i}=\frac{\gamma_{i} / \lambda_{i}}{1+\gamma_{i} / \lambda_{i}}$ as the measure of home preference.

C. Global market equilibrium: Asset pricing relation

The optimal allocations are:

$$
\boldsymbol{\alpha}_{\mathbf{i}}^{*}=\mathbf{\Omega}^{-1} \frac{\overline{\mathbf{r}}}{\lambda_{i}} \times\left(1-\theta_{i}\right)+\theta_{i} \mathbf{d}_{\mathbf{i}}
$$

Thus:

$$
\overline{\mathbf{r}}=\lambda_{i} \boldsymbol{\Omega}\left(\boldsymbol{\alpha}_{\mathbf{i}}{ }^{*}-\theta_{i} \mathbf{d}_{\mathbf{i}}\right) /\left(1-\theta_{i}\right)
$$

The vector \mathbf{M} is the column vector of $m_{i}=M_{i} / M=M_{i} / W$.

$$
\begin{aligned}
& \boldsymbol{\alpha}_{\mathbf{i}}^{*}=\mathbf{\Omega}^{-1} \frac{\overline{\mathbf{r}}}{\lambda_{i}} \times\left(1-\theta_{i}\right)+\theta_{i} \mathbf{d}_{\mathbf{i}} \\
& \sum_{i=1}^{n} W_{i} \boldsymbol{\alpha}_{\mathbf{i}}^{*} / W=\sum_{i=1}^{n} w_{i} \times\left(1-\theta_{i}\right)\left[\mathbf{\Omega}^{-1} \frac{\overline{\mathbf{r}}}{\lambda_{i}}\right]+\sum_{i=1}^{n} w_{i} \theta_{i} \mathbf{d}_{\mathbf{i}}
\end{aligned}
$$

We define the world-average home preference: $\theta_{W}=\sum_{i=1}^{N} w_{i} \theta_{i}$.
Let's make the simplifying assumption that ${ }^{2} \lambda_{i}=\lambda$:

$$
\begin{aligned}
& \mathbf{M}=\left[\boldsymbol{\Omega}^{-1} \frac{\overline{\mathbf{r}}}{\lambda} \times\left(1-\theta_{W}\right)\right]+\sum_{i=1}^{n} w_{i} \theta_{i} \mathbf{d}_{\mathbf{i}} \\
& \overline{\mathbf{r}}=\lambda \boldsymbol{\Omega}\left(\mathbf{M}-\sum_{i=1}^{n} w_{i} \theta_{i} \mathbf{d}_{\mathbf{i}}\right) /\left(1-\theta_{W}\right)
\end{aligned}
$$

Let's define:

$$
\begin{aligned}
& \delta_{i}\left(1-\theta_{W}\right)=w_{i} \theta_{i}-m_{i} \theta_{W} \\
& \sum_{i=1}^{n} w_{i} \theta_{i} \mathbf{d}_{\mathbf{i}}=\sum_{i=1}^{n} m_{i} \theta_{W} \mathbf{d}_{\mathbf{i}}+\sum_{i=1}^{n} \delta_{i}\left(1-\theta_{W}\right) \mathbf{d}_{\mathbf{i}}
\end{aligned}
$$

Remember that the $i^{\text {th }}$ element of \mathbf{M} is m_{i}, so:

$$
\begin{align*}
& \sum_{i=1}^{n} w_{i} \theta_{i} \mathbf{d}_{\mathbf{i}}=\theta_{W} \mathbf{M}+\sum_{i=1}^{n} \delta_{i}\left(1-\theta_{W}\right) \mathbf{d}_{\mathbf{i}} \\
& \overline{\mathbf{r}}=\lambda \mathbf{\Omega}\left(\mathbf{M}-\theta_{W} \mathbf{M}-\sum_{i=1}^{n} \delta_{i}\left(1-\theta_{W}\right) \mathbf{d}_{\mathbf{i}}\right) /\left(1-\theta_{W}\right) \\
& \overline{\mathbf{r}}=\lambda \boldsymbol{\Omega}\left(\mathbf{M}-\sum_{i=1}^{n} \delta_{i} \mathbf{d}_{\mathbf{i}}\right)=\lambda \boldsymbol{\Omega}(\mathbf{M}-\Delta) \tag{A8}
\end{align*}
$$

Note that $\Delta=\sum_{i=1}^{n} \delta_{i} \mathbf{d}_{\mathbf{i}}$ can be considered as a pure arbitrage portfolio as the weights sum to zero while the weights of the market portfolio sum to one.

Let's define:

$$
R_{W}=\sum_{i=1}^{N} m_{i} R_{i} \text { and } R_{\delta}=\sum_{i=1}^{N} \delta_{i} R_{i}
$$

For country i :

$$
\begin{aligned}
& E\left(R_{i}\right)-R_{0}=\lambda \operatorname{cov}\left(R_{i}, R_{W}\right)-\lambda \operatorname{cov}\left(R_{i}, R_{\delta}\right) \\
& E\left(R_{i}\right)-R_{0}=\lambda \operatorname{cov}\left(R_{i}, R_{W}\right)-\lambda \sum_{j} \delta_{j} \operatorname{cov}\left(R_{i}, R_{j}\right)
\end{aligned}
$$

[^1]
[^0]: ${ }^{1}$ Our derivations could be made a bit more formal by taking $\mathbf{r}=\xi \mathbf{r}$ ' and letting ξ become very small. This is a direct application of the "compact" derivations of the approximation by Samuelson (1970).

[^1]: ${ }^{2}$ We could possibly use different λ_{i} and define $\sum\left[\frac{w_{i}}{\lambda_{i}}\right] \times\left(1-\theta_{i}\right)=\frac{1}{\lambda}\left(1-\theta_{W}\right)$

