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1 Derivation of the discount factor P
� (t)

P � (t) = EQt

h
e
R T
t
�r(s)ds

i
(1.1)

P � (t) is easily calculated using the fact thatfrg is a gaussian process. The following can be found, for
example, in Duffie and Kan (1996) or Jegadeesh and Pennachi (1996) and is recalled here for completeness.
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The discount-factor value is then easily derived from the Laplace transform for normal random variables.

P � (t) = eAr(t;T )�Br(t;T )r(t)�C(t;T )�(t) (1.4)
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2 The Risky Zero Coupon Bond price

For the purpose of our implementation we suppose default is triggered by a point process with stochastic
intensity�(s).1 Thus, as in Duffie, Shroder and Skiadas (1996), default occurs at an unpredictable stopping
timeTD, which in terms of the related counting processD(t) can be defined asTD = finf t = D(t) = 1g.
We assume that when the firm defaults, bond holders loose a fractionl(T�

D
) of the market value of the

security (just prior to default). The value of the corporate zero coupon bond is given by:
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(2.1)

where1fAg is the indicator function that takes on the value of one if event A is realized and0 else. Duffie
and Singleton (1995) and Duffie, Schroder and Skiadas (1996) have shown that, under certain technical
conditions, the solution to that recursive stochastic differential equation could be written simply as:

P �

L
(t) = EQt

h
e�

R T
t
(r(s)+l(s)�(s))ds

i
8t < TD (2.2)

Thus the credit spread defined in the text is simply� = l�. In other words,� is the instantaneous expected
loss rate, the product of the default intensity and the proportion of value lost in bankruptcy. This product
may itself be stochastic. It may depend on different state variables and may incorporate jumps.2

In fact, we argue that it is necessary to put more structure on the dynamics of the instantaneous credit
spread when modeling the term structure of credit spreads. We assume that for a top-rated credit issuer at
time t its instantaneous credit process has the following dynamics:
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�
t(t) = �(t) (2.5)

�
t
(t) = � (2.6)

1See Brémaud (1981) for the definition of such a process (D7 p. 27).
2However, it is important that the no-default value of the contract does not jump at the time of bankruptcy. In other words,

the jumps in� should occur with zero probability at the default event. Duffie, Schroder and Skiadas (1996) provide solutions to
defaultable bond prices for more complicated cases.
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are at most deterministic functions of time and� is constant, so that

the instantaneous credit spread for a “refreshed credit quality issuer” follows:
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(s)dw�(s) (2.7)

Thus the price of the risky zero-coupon bond price for a top-rated credit issuer at timet is:

P �
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i
(2.8)

The expectation can be solved via standard PDE approach as in Duffie and Kan (1996), or Das and Foresi
(1996). We provide here another equivalent proof using standard martingale techniques.

First notice that we can write:
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where� is the Ornstein-Uhlenbeck process of equation (2.7). Assuming that(Nt
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To value the first expectation we apply a forward neutral change of measure introduced by El Karoui

and Rochet (1989) and Jamshidian (1991) and defined by� = dQT
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PT (0)
. Note that under the
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d�(t) =
�
�
�
(t)(� � �(t)) � �

r�
�
�
(t)�r(t)Br(t; T )� �

��
�
�
(t)�

�
(t)C(t; T )

�
dt+ �

�
(t)dwQ

T

�
(t) (2.11)

This follows from Girsanov’s theorem which states that given the Radon-Nikodym derivative� above,
underQT , one can define three standard brownian motionswQ
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We see thatf�g is a gaussian process underQT . Using the same approach as for the derivation of
riskless bonds (see appendix 1) we obtain:
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3The change in drift comes from the process of the Girsanov factor process defined by:�t = E
Q

t [�]. Notice thatd�t
�t

=
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r
(t)Br(t; T )dwr(t)� �

�
(t)C(t; T )dw�(t) and the change in the drift for� corresponds precisely to the diffusion part of�t

times the correlation. See Karatzas and Shreve (1991) for an exposition of Girsanov’s theorem. Girsanov’s theorem is, in general,
stated for independent Brownian motions, but can be straightforwardly extended to the case of correlated brownian motions.
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To value the expectation
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we use Fubini’s theorem to show thatZ T
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We also use the following lemma:

Lemma 1 We claim:
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where fNg is a point process with Q-intensity �(�) and f(�) is a predictable and bounded process on
[t; T ].

Proof: See E17 page 73 in Br´emaud (1981) - but notice there is a typo in (4.9), (4.11) page
73 - the correct statement is as above, for which we provide a sketch of proof below.
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Applying generalized Itˆo’s lemma toM(t) (see Protter 1995 ) we obtain:
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Using the above, we obtain:
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where
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Putting equations (2.10),(2.12), (2.17), and (2.18) together, we finally obtain the formula for risky zero
coupon LIBOR bond prices:
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�
(t)e
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t
��t(s;T )ds (2.19)

where:
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1� e�fd(s;T )

�
This model has interesting implications for the top-rated credit quality credit spread. For simplicity

assume�u1 = �u2 = �u and a�d1 = �d2 = �d and that all coefficients are constant. In that case

�t(s; T ) = �u

�
1� e��u(T�s)

�
+ �d

�
1� e�d(T�s)

�
And we see that if both probability and size of credit deterioration are greater than that of credit risk
appreciation (�u � �d and�u � �d) then the term structure of credit spread will be increasing in time to
maturity for top-rated issuers. Notice that to a first order

�t(s; T ) = (�u�u � �d�d) � (T � s)

i.e. only the expected appreciation net of expected depreciation ‘matters.’ For our empirical application
we focus on estimating this difference.

Defining the term structure of credit spreads,SP� (t), to be the difference between the yield on a
defaultable bond and a risk-free bond with similar maturity, we obtain for the present model:

SP � (t) �
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(lnP �
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(t)� lnP � (t)) =

�A�(t; T ) +B�(t; T )�(t) +
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Notice that for the case of constant coefficients we obtain the two following limiting results:

lim
�!0

SP � (t) = �(t) and lim
�!+1

SP � (t) = � �
�2
�

2�2
�

+ �u � �d (2.23)

This illustrates that as the maturity tends to zero the spread tends to the instantaneous credit spread for
“refreshed credit quality” top-rated issuers. On the other hand, as maturity increases towards infinity,
the spread tends towards the limiting spread of a “refreshed credit quality” issuer plus the instantaneous
probability of credit depreciation minus the instantaneous probability of credit appreciation.4

3 Derivation of the swap rate formula

The swap rateY �

S
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(3.1)

4 The intuition for the fact that the size of the jump in credit spread� does not appear in the formula, is that
only the probability of no jumps occurring which depends on the survival probabilitye

�
R
T

0
�sds affects spreads as

T ! 1. Indeed, conditional on jumps occurring, the instantaneous expected risk-adjusted rate grows linearly in
time, which drives the bond price (conditional on jumps occurring) to zero at a ratee

�T 2

.
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Using the fact that the swap rate is a constant, the definition of the risk-free discount bond (1.4) and the
definition of the (6-month) LIBOR rate, we obtain:

Y �

S
(t)

i=2nX
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P :5i(t) =

i=2nX
i=1
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(3.2)

Substituting the expression for the risky discount bond and simple algebra lead to:
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5 (3.3)

Conditioning with respect toti�1 inside the expectation, and using the fact that�(�) is deterministic, we
obtain:
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We thus need to compute the following expectation:EQt
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We use the forward-neutral change of measure described above and the formula ofP� to obtain:
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Using the fact that� is a gaussian process under the forward-neutral measure, this last expression is

easily computed. Noting thatB�(t; ti) � B�(t; ti�1) = �(t; ti�1)B�(ti�1; ti) and tedious algebra then
lead to equation the following:

1 + Y �
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Where in the above, we have defined:

lnC(t; ti�1; ti) =
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After some rearranging and simple algebra, we obtain the equation for the swap rate in the text with:
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4 Proof of Proposition 1

To prove the proposition notice that ifC = 1 the only difference between the LIBOR bond yield rate
formula and the swap rate is the weightings of the forward LIBOR rates. It follows from the definitions

of !L
i

and!i that!i < !L
i

if and only if P :5i
�

(t) >
Pj=2n

j=1 P
:5j

�
(t)P :5j (t)

Pj=2n
j=1 P :5j(t)

. ButP �

�
(t) is a strictly decreasing

function of time to maturity. Hence there exists a�i verifying 0 < �i < n such that for alli < �i the
inequality is verified. In other words, the weigthings in the formula to compute par-bond rates put more
weight on short-maturity forward LIBOR rates relative to the weights in the swap rate formula and the
inverse is true for long-maturity forward LIBOR rates. If the forward LIBOR curve is upward-sloping,
then the weighted sum involved in computing par-bonds rates weighs more the low forward LIBOR rates
and less the high forward LIBOR rates relative to the sum involved in computing the swap rates. As a
consequence, the LIBOR bond yield is lower than the swap rate. The inverse is true if the forward LIBOR
curve is downward-sloping. And obviously the swap rates and LIBOR yields are equal if the forward
LIBOR curve is flat.

5 The empirical implementation

5.1 Data

We use weekly data for Treasury, LIBOR par-bond and swap rates from October 12, 1988 to January 29
1997. The data were obtained from Datastream. Datastream reports the mid swap rates5 quoted by a major
swap dealer for maturities of 2, 3, 4, 5, 7 and 10 years. Treasury bond data covers the maturities: 1, 2, 3,
4, 5, 7 and 10 years. Finally we use the LIBOR yields reported by Datastream for maturities 0.5, 1, 2, 3, 4,
and 5 years. These are quoted yields for fixed-coupon par-bonds negotiated OTC and issued by corporate
issuers (usually banks and financial institutions) rated AA or better.6

We report in Table 1 average Treasury, swap and LIBOR rates (based on semi-annual compounding)
for the period 1988 to 1997 as well as spreads. While the Treasury yield curve has assumed many shapes
over the period, on average, it has been upward-sloping. The average spread between LIBOR and Treasury
yields is increasing with maturity, it ranges from 38 bp at a 1-year maturity to 51 bp at a 5-year maturity.
The average spread between LIBOR and swap rates increases from 14.7 bp for 2 years to 17.3 bp for 5
years. However this spread is quite volatile and can be negative in some periods. By construction, the
swap rate for a 6-month swap should be equal to the 6-month LIBOR (the floating-rate leg). Hence the
LIBOR-Swap spread is zero for a 6-month maturity.

5.2 Econometric methodology

In order to subject our model to empirical scrutiny, we make a few simplifying assumptions. We assume
that all parameters are constant. To reduce the number of parameters to be estimated, we simply assume
that �u1 = �u2 = �u, �d1 = �d2 = �d and that�t

d
(s) = �d, and�t

u
(s) = �u. In words, we assume

that when the credit quality deteriorates (appreciates), both the long-term mean and the level of the credit
spreads jump by an equal amount, and that the probability of credit deterioration (appreciation) is constant.

5The bid and ask swap rates quoted depend on the credit quality of the customer. The bid-mid and mid-ask spreads for a
generic swap quoted to a AAA or AA customer are generally equal to one basis point over the period. As mentioned in Sun,
Sundaresan and Wang (1993) and Cossin and Pirotte (1997), the spreads increase by a few basis points for a lesser-rated customer.

6The market is pretty liquid, see Sun, Sundaresan and Wang (1993) for a discussion of the LIBOR bond market and compar-
isons of the Datastream-data with alternative data sets
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Table 1:Summary statistics on Treasury yields and various spreads. All yields are semi-annual and reported in per cent.

Maturity Treasury LIBOR Swap LIBOR-Treasury Swap-Treasury LIBOR-Swap
1 5.875 6.256 n.a. 0.381 n.a. n.a.
2 6.287 6.685 6.538 0.398 0.251 0.147
3 6.504 6.983 6.829 0.479 0.325 0.154
4 6.700 7.211 7.051 0.511 0.350 0.161
5 6.881 7.395 7.222 0.514 0.341 0.173
7 7.075 n.a. 7.453 n.a. 0.377 n.a.
10 7.257 n.a. 7.659 n.a. 0.402 n.a.

Because of a well-known indeterminacy arising in such models (Duffee (1999), Duffie and Singleton
(1999)) we cannot estimate the intensity of the jump separately from the size of the jump. Moreover we
cannot estimate appreciation seperately from depreciation. We thus estimate the expected appreciation net
of expected depreciation� � �u�u � �d�d.7

We conduct a maximum-likelihood estimation using both time-series and cross-sectional data in the
spirit of Chen and Scott (1993) and Pearson and Sun (1994). The approach consists in using three arbi-
trarily chosen yields, e.g. a swap rate and a LIBOR bond yield to determine the state (r; �; �) using the
formulas for the swap rate, the Treasury rate and the corporate bond rate, and given a vector or parameter
values. The remaining yields, which, at any point in time, are also deterministic functions of the state
variables are then over identified. Following Chen and Scott (1993), we assume these other yields are
priced or measured with ‘error.’8

More formally, we supposêY (t) = Y (t) + u(t), whereY (t) is the vector of “true arbitrage-free”
yields andu(t) is a vector of “measurement/pricing errors” that is assumed to be identically zero for
three components, say the first three. The remaining components of the measurement-error vector are
assumed to be driven by an AR1 process similar to that of Chen and Scott (1993) of the formui(tj) =
�iui(tj�1) + �i(tj), where the�i are joint-normally distributed and independent ofr; � and�. The yields
are observed at timest0 < t1 < t2 < : : : < tm. Becauser; �; � are jointly gaussian, the likelihood can
easily be derived.

Indeed, the likelihood given the Markovian properties of our model, can then be expressed as follows:

L � L
�
Ŷ (t1); Ŷ (t2); : : : ; Ŷ (tm)

�
= L

�
Ŷ (tm)jŶ (tm�1)

�
� � � L

�
Ŷ (t1)jŶ (t0)

�
� L

�
Ŷ (t0)

�
(5.1)

whereŶ (ti) = Y (ti) + u(ti) is a vector of swap rates, LIBOR and Treasury yields observed at timeti
with ‘error.’ Let us definêYi(t) to be theith element ofŶ (t). As discussed previously, knowledge of (say)
Y1(t), Y2(t) andY3(t) (i.e. assumingu1 = u2 = u3 = 0) allows us to perfectly infer the values ofr(t),
�(t) and�(t). Conditioning on the first two elements in̂Y , we obtain:

L = L
�
Ŷ (t0)

�
�m

j=1L
�
Ŷi(tj); i > 3jŶ (tj�1); Y1(tj); Y2(tj); Y3(tj)

�
�L

�
Y1(tj); Y2(tj); Y3(tj)jŶ (tj�1)

�
(5.2)

Since we assume an auto-regressive process for the error terms, we haveŶi(tj) = Yi(tj) + �iui(tj�1) +

7With these assumptions�t(s) reduces to:�t(s; T ) = �u

�
1� e��u(T�s)

�
� �d

�
1� e��d(T�s)

�
. But for small�

(empirically it is of the order of10�4) a Taylor expansion shows that this reduces to�t(s; T ) = (�u�
u
� �d�

d
) � (T � s). We

thus choose to jointly estimate the parameter� � �u�
u
� �d�

d using the approximation:�t(s; T ) = �(T � s).
8Duffie and Singleton (1997) use a similar method. Alternatively, we could have used a Kalman-filter to avoid making an

arbitrary assumption on which yields are priced without errors.
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�i(tj) andYi(t) i > 3 is deterministic given(Y1(t); Y2(t); Y3(t)), we obtain:

L = L
�
Ŷ (t0)

�
�m

j=1L (�(tj)j�(tj�1)) � L (r(tj); �(tj); �(tj)jr(tj�1); �(tj�1); �(tj�1)) � jJ(tj)j (5.3)

WherejJ(t)j is the jacobian of the transformation fromr,�,� to Y1, Y2, Y3 at datet (and the Jacobian of
the transformation from� to Ŷ is one).

Finally, observing that(r; �; �) forms a gaussian process, we can easily derive its (gaussian) transi-
tion density. With the additional assumption that the(�) are independent normally distributed, the log-
likelihood can easily be derived.9
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